FIRST DETECTION OF SHV-TYPE EXTENDED SPECTRUM β-LACTAMASES IN THE UNIVERSITY HOSPITAL COMPLEX PAEDIATRIC CHARLES DE GAULLE (CHUP-CDG) OF OUAGADOUGOU IN BURKINA FASO

Mètuor Dabiré Amana
Laboratoire d’Enzymologie de la Chimio-Résistance Bactérienne, Université de Ouagadougou, Burkina Faso

Zongo K Jacob
Laboratoire d’Enzymologie de la Chimio-Résistance Bactérienne, Université de Ouagadougou, Burkina Faso

Zeba Boukaré
Laboratoire d’Enzymologie de la Chimio-Résistance Bactérienne, Université de Ouagadougou, Burkina Faso

Traoré/Ouedraogo Rasmata
Laboratoire d’analyse médicale du Centre Hospitalier Universitaire Pédiatrique Charles De Gaulle de Ouagadougou

Moussawi Jihad
Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Belgium

Baucher Marie
Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Belgium

El Jaziri Mondher
Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Belgium

ABSTRACT
Strains were isolated from urines clinical samples from patients from various service units of University Hospital complex Paediatric Charles De Gaulle (CHUP-CDG) in Burkina Faso. These strains were resistant to at least one oxyimino-cephalosporin. They were identified as producer of extended spectrum β-lactamases (ESBL) by double-disk synergy test between amoxicillin-clavulanate and cefotaxime, ceftriaxone or ceftazidime and by kinetic methods. Crude extract from these isolates showed a broad-substrate profile by hydrolyzing cefuroxime, cefotaxime, ceftriaxone and with a lower degree to ceftazidime and cefepime but not imipinem. Sequencing of PCR products amplified with primers designed for bla_{SHV} genes showed that these genes coded for SHV-11, SHV-12, SHV-28, SHV-32, SHV-38, SHV-76 and SHV-99. This is the first description of these enzymes in Burkina Faso.

© 2014 AESS Publications. All Rights Reserved.
Keywords: SHV-type extended spectrum β-lactamases, University hospital complex paediatric charles de gaulle.

1. INTRODUCTION

Resistance to antibiotics may be caused by several mechanisms, but the most important of which is the production of β-lactamase that hydrolyzes the β-lactam ring [1, 2]. β-Lactamases (E.C. 3.5.2.6) are the primary agents of bacterial resistance to penicillins and cephalosporins. The enzymes are divided into four major molecular classes, classes A, B, C, and D on the basis of their amino acid sequences [3-5]. All β-lactamases except the zinc-containing class B enzymes are serine-reactive hydrolases that act via an acyl intermediate [3]. To date, a large variety of β-lactamases have been documented in various Gram negative bacilli such as Pseudomonas spp. and members of the family Enterobacteriaceae [4]. Resistance to β-lactam antibiotics was demonstrated in Escherichia coli even before penicillin was released for clinical use. β-lactamases can be mediated by plasmid or chromosome [3]. In the 1960s, the first plasmid-transferable β-lactamase was discovered and named TEM-1 [6]. In this study, we characterize SHV-type extended spectrum β-lactamases produced by cephalosporins resistant strains isolated from samples of urines from CHUP-CDG in Burkina Faso.

2. MATERIALS AND METHODS

2.1. Bacterial Strains

Seven K. pneumoniae, 1 K. oxytoca ,2 Klebsiella sp and 2 Enterobacter sp. strains were collected between July 2010 and Mars 2012, from samples of urines of various service units of CHUP-CDG in Burkina Faso. Isolates were identified using an API 20 E system (bio-Mérieux, Marcy-l’Étoile, France).

2.2. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was performed using the disk diffusion method on Müeller-Hinton agar (Bio Rad, France) as recommended by the Clinical and Laboratory Standards Institute (CLSI) [7]. The double-disk synergy test for confirmation of ESBL activity was carried out as described previously [8, 9], by using amoxicillin–clavulanate against cefotaxime (CTX), ceftriaxone (CRO), ceftazidime (CAZ) or aztreonam (ATM). Minimal inhibitory concentrations (MIC) of CRO, CTX, CAZ, cefuroxim (CXM), cefepim (FEP) and imipenem (IPM) were determined by Method of dilution in liquid medium for strains according to CLSI guidelines [7].

2.3. Bacterial DNA Extraction

Genomic DNA was extracted from bacteria using DNAzol®Reagent (Invitrogen/DNA by life technologies) following instructions of the manufacturer.

2.4. Polymerase Chain Reaction (PCR) Amplification of Bla_{shv} Genes and Sequencing

Detection of SHVencoding genes was performed by PCR. The pair of primers SHV F: 5’-ATGCGTTATATTCCCCGTG -3’ and SHV R: 5’-TTAGCGTTGCCAGTGCTC-3’ [10] was used to
amplify blaSHV sequences. The DNA amplification program consisted of an initial denaturation step 5 min at 96°C, followed by 30 cycles of denaturation for 1 min at 96°C, annealing for 1 min at 60°C and 1 min at 72°C for polymerization. Final products were extended by incubation for 10 min at 72 °C. PCR products were visualized by agarose gel electrophoresis (Fig.1). Amplicons of 875bp were sequenced by the Company GATC Biotech in Europe, and the resulting sequences were then compared with the sequences from GenBank database.

3. RESULTS

3.1. B-Lactam Susceptibility Profile and Minimum Inhibitory Concentration Determination

The different strains showed a significant degree of multiresistance to various antibiotics (Table 1). All the 12 strains were resistant to CXM, CTX and CRO and with a lower degree to CAZ and FEP but were susceptible to IPM. The disk diffusion method showed synergy between ceftazidime, cefotaxime, ceftriaxone, and amoxicillin–clavulanic acid against the strains, suggesting the presence of a class A ESBL [8, 9, 11]

3.2. Amplification of B-Lactamase-Encoding BlaCTX-M Genes and Sequence Analysis

PCR analysis confirmed the presence of an 875 bp blaSHV genes in all strains. Sequences analyses of the nucleotide sequence showed the occurrence of blaSHV.11 (Sequence ID: gb|GU064384.1|) in 6 samples, blaSHV.12 (Sequence ID: gb|GU732834.1|), blaSHV.28 (Sequence ID: gb|HQ877609.1|), blaSHV.32 (Sequence ID: gb|AY037778.1|), blaSHV.38 (Sequence ID: gb|GQ407125.1|), blaSHV.76 (Sequence ID: embl|AM176551.2|) and blaSHV.99 (Sequence ID: embl|AM922305.1|) in 1 sample each one (Table 2).

4. DISCUSSION

In this report, we mentioned the occurrence of several strains carrying blaSHV.11, -12, -28, -32, -38, -76 and -99 genes for the first time in Burkina Faso. Strains were found to be resistant to oxyiminocephalosporins, FEP and exhibited a positive double-disc synergy test, indicating the presence of an ESBL [11]. Multiresistance has often been described for ESBL producing clinical isolates [12-17]. When a PCR assay for SHV-type genes was used, 875 bp long amplicons were detected in each strain. Sequences analysis showed that PCR products correspond to blaSHV.11, -12, -28, -32, -38, -76 or -99.

Although SHV-11-type β-lactamase is a penicillinase, the enzyme activity measured by a spectrophotometer as previously described [18] showed a hydrolytic activities against cloxacilline, cephalotin and oxymino cephalosporins such as cefotaxime and ceftriaxon.

The hydrolysis of the extended spectrum cephalosporins by the crude extract of SHV-11 producing strains is due to the hyper production of SHV-11 coded simultaneously by plasmidic and chromosomal genes [19]. In fact, modifications of outer membrane proteins [20], and hyperproduction of SHV-1 enzyme due to high gene copy number [21], or a single base pair change in the promoter sequence can compensate for the low specific activity of the β-lactamase to an extended spectrum β-lactams and monobactams [8, 20].
SHV-type β-lactamases contributed poorly to the resistance profile of the clinical isolates, which was mostly reflected by the expression of a CTX-M-type enzyme. SHV-types ESBL were reported in several countries but never in Burkina Faso. For instance β-lactamases SHV-98, SHV-99 and SHV-100 were produced by clinical Klebsiella pneumoniae strains in an Algerian hospital [22]. SHV-28 was reported at the Southwest Hospital of the Third Military Medical College in China in 2002 (GenBank AF538324), and it was the first report of SHV-28. [23] reported the presence of SHV-28 in two strains in Korea [23]. SHV-28 was also demonstrated by Tofteland, et al. [24] in Norway in 2006 [24].

Ndugulile, et al. [25] reported the presence of SHV-28 in Africa for the first time in 2005 [25]. SHV-28 was also reported in SOUTH INDIA [26]. SHV-12 was produced by Enterobacteriaceae in Tanzanian [27]. The β-lactamase SHV-38 is the first example of a chromosome-encoded SHV-type enzyme with an extended hydrolysis profile that also includes, like the other ESBLs of the SHV-type, some expanded-spectrum cephalosporins [28, 29].

In this study, the genes of SHV-types β-lactamases are carried by klebsiella and Enterobacter. But in other countries, the genes of SHV-types β-lactamases are found in other bacterial such as Shigella dysenteriae in India [30], Escherichia coli in Korea [31], Pantoea spp in Tanzanian [27].

The easy horizontal and vertical spread of β-lactamases worldwide will therefore dictate future research. Thus, considering the diversity of the enzymic characteristics of β-lactamases, the biochemical characterization of new enzymes is essential to understand their individual contribution to resistance phenotypes of pathogens which have an impact on public health [32].

Careful attention to infection control and rational use of antimicrobials may help prevent further spread of these multidrug-resistant bacteria.

5. ACKNOWLEDGEMENTS

This study was done with the financial support of the University Commission for the Development (CUD).

REFERENCES

Table-1. Bacterial isolates and minimum inhibitory concentration determination of 6 antibiotics

<table>
<thead>
<tr>
<th>Samples</th>
<th>Isolates</th>
<th>MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CXM</td>
</tr>
<tr>
<td>Urines 46</td>
<td>K. pneumoniae</td>
<td>200<MIC ≤ 300</td>
</tr>
<tr>
<td>Urines 120</td>
<td>K. pneumoniae</td>
<td>>300</td>
</tr>
<tr>
<td>Urines 213</td>
<td>K. pneumoniae</td>
<td>>300</td>
</tr>
<tr>
<td>Urines 466</td>
<td>K. pneumoniae</td>
<td>200<MIC ≤ 300</td>
</tr>
<tr>
<td>Urines 538</td>
<td>K. pneumoniae</td>
<td>100<MIC ≤ 200</td>
</tr>
<tr>
<td>Urines 774</td>
<td>K. pneumoniae</td>
<td>>300</td>
</tr>
<tr>
<td>Urines 778</td>
<td>K. pneumoniae</td>
<td>100<MIC ≤ 200</td>
</tr>
<tr>
<td>Urines 336</td>
<td>Klebsiella sp</td>
<td>200<MIC ≤ 300</td>
</tr>
<tr>
<td>Urines 715</td>
<td>Klebsiella sp</td>
<td>200<MIC ≤ 300</td>
</tr>
<tr>
<td>Urines 613</td>
<td>K. oxytoca</td>
<td>>300</td>
</tr>
<tr>
<td>Urines 556</td>
<td>Enterobacter sp</td>
<td>200<MIC ≤ 300</td>
</tr>
<tr>
<td>Urines 1012</td>
<td>Enterobacter sp</td>
<td>>300</td>
</tr>
</tbody>
</table>

MIC : Minimal inhibitory concentrations; CXM : Cefuroxim ; CTX : Cefotaxim ; CRO : Ceftriaxon; CAZ : Ceftazidim; FEP: Cefepim; IPM: Imipenem

Fig-1. Agarose gel of SVH PCR products

M1, Marker of molecular weight (GeneRuler 100bp DNA Ladder), numbers 1-7 represent the samples: 1=Uro774; 2=Uro778; 3=Uro538; 4=Uro120; 5=Uro213; 6=Uro466; 7=Uro336; 8=Uro715; 9=Uro46
Table-2. Bacterial isolates and SHV β-lactamases-types

<table>
<thead>
<tr>
<th>isolates</th>
<th>β-lactamases-types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SHV</td>
</tr>
<tr>
<td>K.pneumoniae 774</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae778</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae 538</td>
<td>+</td>
</tr>
<tr>
<td>Enterobacter sp1012</td>
<td>+</td>
</tr>
<tr>
<td>Enterobacter sp556</td>
<td>+</td>
</tr>
<tr>
<td>Klesiella sp715</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae46</td>
<td>+</td>
</tr>
<tr>
<td>K.oxytoca613</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae 120</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae 213</td>
<td>+</td>
</tr>
<tr>
<td>K.pneumoniae466</td>
<td>+</td>
</tr>
<tr>
<td>Klesiella sp336</td>
<td>+</td>
</tr>
</tbody>
</table>