WEAK SEPARATION AXIOMS VIA \(\Omega - \text{OPEN SET AND} \quad \Omega - \text{CLOSURE OPERATOR} \)

Mustafa. H. Hadi

University of Babylon, College of Education for pure sciences, Mathematics Department, Iraq

Luay. A. Al-Swidi

University of Babylon, College of Education for pure sciences, Mathematics Department, Iraq

ABSTRACT

In this paper we introduce a new type of weak separation axioms with some related theorems and show that they are equivalent with these in [1].

© 2014 AESS Publications. All Rights Reserved.

Keywords: Weak separation axioms, Weak \(\omega - \text{open sets, Weak regular spaces,} \quad \omega - \text{ker}(A), \)
Sober \(\omega - R_0, \quad \omega - R_0 \text{ space,} \quad \omega - R_1 \text{ space.} \)

1. INTRODUCTION

In this article let us prepare the background of the subject. Throughout this paper , \((X, T)\) stands for topological space. Let \(A\) be a subset of \(X\). A point \(x\) in \(X\) is called *condensation* point of \(A\) if for each \(U\) in \(T\) with \(x\) in \(U\), the set \(U \cap A\) is uncountable [2]. In 1982 the \(\omega - \text{closed set was first introduced by Hdeib [2], and he defined it as:} \quad A \text{ is } \omega - \text{closed if it contains all its condensation points and the } \omega - \text{open set is the complement of the } \omega - \text{closed set. It is not hard to prove: any open set is } \omega - \text{open. Also we would like to say that the collection of all } \omega - \text{open subsets of } X \text{ forms topology on } X. \text{ The closure of } A \text{ will be denoted by } cl(A), \text{ while the intersection of all } \omega - \text{closed sets in } X \text{ which containing } A \text{ is called the } \omega - \text{closure of } A, \text{ and will denote by } cl_\omega(A). \text{ Note that } cl_\omega(A) \subset cl(A). \text{ In 2005 Caldas, et al. [3] introduced some weak separation axioms by utilizing the notions of } \delta - \text{pre } \omega - \text{open sets and } \delta - \text{pre } \omega - \text{closure. In this paper we use Caldas, et al. [3] definitions to introduce new spaces by using the } \omega - \text{open sets defined by Hdeib [2], we call it } \omega - R_i - \text{Spaces } i = 0,1,2, \text{ and we show that } \omega - R_0 , \omega^* - T_1 \text{ space and } \omega - \text{symmetric space are equivalent.} \text{ For our main results we need the following definitions and results:} \text{ Definition-1.1.} \text{ Noiri, et al. [4] A space } (X,T) \text{ is called a } door space \text{ if every subset of } X \text{ is either open or closed.}
Definition-1.2.

Hadi [1] The topological space \(X \) is called \(\omega^* - T_1 \) space if and only if, for each \(x \neq y \in X \), there exist \(\omega \) open sets \(U \) and \(V \), such that \(x \in U, y \notin U \), and \(y \in V, x \notin V \).

Lemma-1.3.

Hadi [1] The topological space \(X \) is \(\omega^* - T_1 \) if and only if for each \(x \in X \), \(\{x\} \) is \(\omega \) closed set in \(X \).

Definition-1.4.

Hadi [1] The topological space \(X \) is called \(\omega^* - T_2 \) space if and only if, for each \(x \neq y \in X \), there exist two disjoint \(\omega \) open sets \(U \) and \(V \) with \(x \in U \) and \(y \in V \).

For our main result we need the following property of \(\omega \) closure of a set:

Proposition-1.5.

Let \(\{A_j, \lambda \in \Lambda\} \) be a family of subsets of the topological space \((X, T) \), then

1. \(cl_\omega(n_{\lambda \in \Lambda} A_\lambda) \subseteq n_{\lambda \in \Lambda} cl_\omega(A_\lambda) \).
2. \(U_{\lambda \in \Lambda} cl_\omega(A_\lambda) \subseteq cl_\omega(U_{\lambda \in \Lambda} A_\lambda) \).

Proof:

1. It is clear that \(n_{\lambda \in \Lambda} A_\lambda \subseteq A_\lambda \) for each \(\lambda \in \Lambda \). Then by (4) of Theorem 1.5.3 in Hadi [1], we have
 \(cl_\omega(n_{\lambda \in \Lambda} A_\lambda) \subseteq cl_\omega(A_\lambda) \) for each \(\lambda \in \Lambda \). Therefore
 \(cl_\omega(n_{\lambda \in \Lambda} A_\lambda) \subseteq n_{\lambda \in \Lambda} cl_\omega(A_\lambda) \).
 Note that the opposite direction is not true. For example consider the usual topology \(T \) for \(\mathbb{R} \), If
 \(A_i = (0, \frac{1}{i}), i = 1, 2, \ldots \), and \(\cap_{i \in \mathbb{N}} cl_\omega(A_i) = \{0\} \). But \(cl_\omega(\cap_{i \in \mathbb{N}} A_i) = cl_\omega(\emptyset) = \emptyset \). Therefore
 \(n_{\lambda \in \Lambda} cl_\omega(A_\lambda) \nsubseteq cl_\omega(n_{\lambda \in \Lambda} A_\lambda) \).

2. Since \(A_\lambda \subseteq U_{\lambda \in \Lambda} A_\lambda \) for each \(\lambda \in \Lambda \). Then by (4) of Theorem 1.5.3 in Hadi [1], we get
 \(cl_\omega(A_\lambda) \subseteq cl_\omega(U_{\lambda \in \Lambda} A_\lambda) \), for each \(\lambda \in \Lambda \). Hence \(U_{\lambda \in \Lambda} cl_\omega(A_\lambda) \subseteq cl_\omega(U_{\lambda \in \Lambda} A_\lambda) \).
 Note that the opposite direction is not true. For example consider the usual topology \(T \) for \(\mathbb{R} \), If
 \(A_i = \{1\}, i = 1, 2, \ldots \), \(cl_\omega(A_i) = \{1\} \) and \(\cup_{i \in \mathbb{N}} cl_\omega(A_i) = \{1, \frac{1}{2}, \frac{1}{3}, \ldots \} \). But \(cl_\omega(\cup_{i \in \mathbb{N}} A_i) = \{1, \frac{1}{2}, \frac{1}{3}, \ldots , 0\} \). Thus \(cl_\omega(\cup_{\lambda \in \Lambda} A_\lambda) \nsubseteq \cup_{\lambda \in \Lambda} cl_\omega(A_\lambda) \).

2. \(\Omega - R_1 - \text{SPACES, FOR } i = 0, 1 \)

In this section we introduce some types of weak separation axioms by utilizing the \(\omega \) open sets defined in Hdeib [2].

Definition-2.1.

Let \(A \subset (X, T) \), then the \(\omega \) kernel of \(A \) denoted by \(\omega - ker(A) \) is the set
\(\omega - ker(A) = \cap \{O, \text{where } O \text{ is an } \omega \text{-open set in } (X, T) \text{ containing } A\} \).

Proposition-2.2.

Let \(A \subset (X, T) \), and \(x \in X \). Then
\[\omega - ker(A) = \{ x \in X : cl_\omega(\{x\}) \cap A \neq \emptyset \}. \]

Proof:

Let \(A \) be a subset of \(X \), and \(x \in \omega - ker(A) \), such that \(cl_\omega(\{x\}) \cap A = \emptyset \). Then \(x \notin X \setminus cl_\omega(\{x\}) \), which is an \(\omega \) -open set containing \(A \). This contradicts \(x \in \omega - ker(A) \). So \(cl_\omega(\{x\}) \cap A \neq \emptyset \).

Then let \(x \in X \), be a point satisfied \(cl_\omega(\{x\}) \cap A \neq \emptyset \). Assume \(x \notin \omega - ker(A) \), then there exists an \(\omega \) -open set \(G \) containing \(A \) but not \(x \). Let \(y \in cl_\omega(\{x\}) \cap A \). Hence \(G \) is an \(\omega \) -open set containing \(y \) but not \(x \). This contradicts \(cl_\omega(\{x\}) \cap A \neq \emptyset \). So \(x \in \omega - ker(A) \).

Definition-2.3.

A topological space \((X, T)\) is said to be sober \(\omega - R_0 \) if \(\cap_{x \in X} cl_\omega(\{x\}) = \emptyset \).

Theorem-2.4.

A topological space \((X, T)\) is sober \(\omega - R_0 \) if and only if \(\omega - ker(\{x\}) \neq X \) for each \(x \in X \).

Proof:

Suppose that \((X, T)\) is sober \(\omega - R_0 \). Assume there is a point \(y \in X \), with \(\omega - ker(\{y\}) = X \). Let \(x \in X \), then \(x \in V \) for any \(\omega \) -open set \(V \) containing \(y \), so \(y \in cl_\omega(\{x\}) \) for each \(x \in X \). This implies \(y \in \cap_{x \in X} cl_\omega(\{x\}) \), which is a contradiction with \(\cap_{x \in X} cl_\omega(\{x\}) = \emptyset \).

Now suppose \(\omega - ker(\{x\}) \neq X \) for every \(x \in X \). Assume \(X \) is not sober \(\omega - R_0 \), it mean there is \(y \) in \(X \) such that \(y \in \cap_{x \in X} cl_\omega(\{x\}) \), then every \(\omega \) -open set containing \(y \) must contain every point of \(X \). This implies that \(X \) is the unique \(\omega \) -open set containing \(y \). Therefore \(\omega - ker(\{y\}) = X \), which is a contradiction with our hypothesis. Hence \((X, T)\) is sober \(\omega - R_0 \).

Definition-2.5.

A map \(f : X \rightarrow Y \) is called \(\omega - closed \), if the image of every \(\omega \) -closed subset of \(X \) is \(\omega \) -closed in \(Y \).

Proposition-2.6.

If \(X \) is a space, \(f \) is a map defined on \(X \) and \(A \subseteq X \), then \(cl_\omega(f(A)) \subseteq f(cl_\omega(A)) \).

Proof:

We have \(A \subseteq cl_\omega(A) \), then \(f(A) \subseteq f(cl_\omega(A)) \). This implies \(cl_\omega(f(A)) \subseteq cl_\omega(f(cl_\omega(A))) = f(cl_\omega(A)) \). Hence \(cl_\omega(f(A)) \subseteq f(cl_\omega(A)) \).

Theorem-2.7.

If \(f : X \rightarrow Y \) is one to one \(\omega \) -closed map and \(X \) is sober \(\omega - R_0 \), then \(Y \) is sober \(\omega - R_0 \).

Proof:

From Proposition 1.5, we have
\[\cap_{y \in Y} cl_\omega(\{y\}) \subseteq \cap_{x \in X} cl_\omega(\{f(x)\}) \subseteq \cap_{x \in X} f(cl_\omega(\{x\})) \]
\[= f(\cap_{x \in X} cl_\omega(\{x\})) \]
\[= f(\emptyset) = \emptyset. \]
Thus Y is sober $\omega - R_0$

Definition-2.8.

A topological space (X, T) is called $\omega - R_0$ if every $\omega -$open set contains the $\omega -$closure of each of its singletons.

Theorem-2.9.

The topological door space is $\omega - R_0$ if and only if it is $\omega^* - T_1$.

Proof:

Let x, y are distinct points in X. Since (X,T) is door space so that for each x in , $\{x\}$ is open or closed.

i. 1. When $\{x\}$ is open, hence $\omega -$open set in X. Let $V = \{x\}$, then $x \in V$, and $y \notin V$. Therefore since (X,T) is $\omega - R_0$ space, so that $cl_{\omega}((x)) \subseteq V$. Then $x \notin X\setminus V$, while $y \in X\setminus V$, where $X\setminus V$ is an $\omega -$open subset of X.

2. Whenever $\{x\}$ is closed, hence it is $\omega -$closed, $y \in X\setminus \{x\}$, and $X\setminus \{x\}$ is $\omega -$open set in X. Then since (X,T) is $\omega - R_0$ space, so that $cl_{\omega}((y)) \subseteq X\setminus \{x\}$. Let $V = X\setminus cl_{\omega}((y))$, then $x \in V$, but $y \notin V$, and V is an $\omega -$open set in X. Thus we obtain (X,T) is $\omega^* - T_1$.

ii. For the other direction assume (X,T) is $\omega^* - T_1$, and let V be an $\omega -$open set of X, and $x \in V$. For each $y \in X\setminus V$, there is an $\omega -$open set V_y such that $x \notin V_y$, but $y \in V_y$. So $cl_{\omega}((x)) \cap V_y = \emptyset$, which is true for each $y \in X\setminus V$. Therefore $cl_{\omega}((x)) \cap (\bigcup_{y \in X\setminus V} V_y) = \emptyset$. Then since $y \in V_y$, $X\setminus V \subseteq \bigcup_{y \in X\setminus V} V_y$, and $cl_{\omega}((x)) \subseteq V$. Hence (X,T) is $\omega - R_0$.

Definition-2.10.

A topological space (X,T) is $\omega -$symmetric if for x and y in the space X, $x \in cl_{\omega}((y))$ implies $y \in cl_{\omega}((x))$.

Proposition-2.11.

Let X be a door $\omega -$symmetric topological space . Then for each $x \in X$, the set $\{x\}$ is $\omega -$closed.

Proof:

Let $x \neq y \in X$, since X is a door space so $\{y\}$ is open or closed set in X. When $\{y\}$ is open, so it is $\omega -$open, let $V_y = \{y\}$. Whenever $\{y\}$ is $\omega -$closed , $x \notin \{y\} = cl_{\omega}((y))$. Since X is $\omega -$symmetric we get $y \notin cl_{\omega}((x))$. Put $V_x = X\setminus cl_{\omega}((x))$, then $x \notin V_x$ and $y \in V_x$, and V_x is $\omega -$open set in X. Hence we get for each $y \in X\setminus \{x\}$ there is an $\omega -$open set V_y such that $x \notin V_y$ and $y \in V_y$. Therefore $X\setminus \{x\} = \bigcup_{y \in X\setminus \{x\}} V_y$ is $\omega -$open, and $\{x\}$ is $\omega -$closed.

Proposition-2.12.

Let (X,T) be $\omega^* - T_1$ topological space, then it is $\omega -$symetric space.

Proof:

Let $x \neq y \in X$. Assume $y \notin cl_{\omega}((x))$, then since X is $\omega - T_1$ there is an open set U containing x but not y, so $x \notin cl_{\omega}((y))$. This completes the proof.
Theorem-2.13.

The topological door space is $\omega -$ symmetric if and only if it is $\omega^* - T_1$.

Proof:
Let (X, T) be a door $\omega -$ symmetric space. Then using Proposition 2.11 for each $x \in X$, $\{x\}$ is $\omega -$ closed set in X. Then Lemma 1.3, we get that (X, T) is $\omega^* - T_1$. On the other hand, assume (X, T) is $\omega^* - T_1$, then directly by Proposition 2.12, (X, T) is $\omega -$ symmetric space.

Let (X, T) be a topological door space, then the following are equivalent:
1. (X, T) is $\omega - R_0$ space.
2. (X, T) is $\omega^* - T_1$ space.
3. (X, T) is $\omega -$ symmetric space.

Proof:
The proof follows immediately from Theorem 2.9 and Theorem 2.13.

Corollary-2.15.

If (X, T) is a topological door space, then it is $\omega - R_0$ space if and only if for each $x \in X$, the set $\{x\}$ is $\omega -$ closed set.

Proof:
We can prove this corollary by using Corollary 2.14 and Lemma 1.3.

Theorem-2.16.

Let (X, T) be a topological space contains at least two points. If X is $\omega - R_0$ space, then it is sober $\omega - R_0$ space.

Proof:
Let x and y are two distinct points in X. Since (X, T) is $\omega - R_0$ space so by Theorem 2.8 it is $\omega^* - T_1$. Then Lemma 1.3 implies $cl_{\omega}(\{x\}) = \{x\}$ and $cl_{\omega}(\{y\}) = \{y\}$. Therefore $\cap_{p \in \{x, y\}} cl_{\omega}(\{p\}) \subset cl_{\omega}(\{x\} \cap cl_{\omega}(\{y\})) = \{x\} \cap \{y\} = \emptyset$. Hence (X, T) is sober $\omega - R_0$ space.

Definition-2.17.

A topological door space (X, T) is said to be $\omega - R_1$ space if for x and y in X, with $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$, there are disjoint $\omega -$ open set U and V such that $cl_{\omega}(\{x\}) \subset U$, and $cl_{\omega}(\{y\}) \subset V$.

Theorem-2.18.

The topological door space is $\omega - R_1$ if and only if it is $\omega^* - T_2$ space.

Proof:
Let x and y be two distinct points in X. Since X is door space so for each x in X, The set $\{x\}$ is open or closed.

i. If $\{x\}$ is open. Since $\{x\} \cap \{y\} = \emptyset$, then $\{x\} \cap cl_{\omega}(\{y\}) = \emptyset$. Thus $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$.

379
ii. Whenever \(\{x\} \) is closed, so it is \(\omega \)-closed and \(cl_\omega(\{x\}) \cap \{y\} = \{x\} \cap \{y\} = \emptyset \). Therefore \(cl_\omega(\{x\}) \neq cl_\omega(\{y\}) \). We have \((X, T) \) is \(\omega - R_1 \) space, so that there are disjoint \(\omega \)-open sets \(U \) and \(V \) such that \(x \in cl_\omega(\{x\}) \subset U \), and \(y \in cl_\omega(\{y\}) \subset V \), so \(X \) is \(\omega^* - T_2 \) space.

For the opposite side let \(x \) and \(y \) be any points in \(X \), with \(cl_\omega(\{x\}) \neq cl_\omega(\{y\}) \). Since every \(\omega^* - T_2 \) space is \(\omega^* - T_1 \) space so by (3) of Theorem 2.2.15 \(cl_\omega(\{x\}) = \{x\} \) and \(cl_\omega(\{y\}) = \{y\} \), this implies \(x \neq y \). Since \(X \) is \(\omega^* - T_2 \) there are two disjoint \(\omega \)-open sets \(U \) and \(V \) such that \(cl_\omega(\{x\}) = \{x\} \subset U \), and \(cl_\omega(\{y\}) = \{y\} \subset V \). This proves \(X \) is \(\omega - R_1 \) space.

Corollary-2.19.

Let \((X, T) \) be a topological door space. Then if \(X \) is \(\omega - R_1 \) space then it is \(\omega - R_0 \) space.

Proof:

Let \(X \) be an \(\omega - R_1 \) door space. Then by Theorem 2.17 \(X \) is \(\omega^* - T_2 \) space. Then since every \(\omega^* - T_2 \) space is \(\omega^* - T_1 \), so that by Theorem 2.9, \(X \) is \(\omega - R_0 \) space.

REFERENCES

