ON THE STARLIKENESS FOR CERTAIN ANALYTIC FUNCTIONS

Lifeng Guo
School of Mathematical Science and Technology, Northeast Petroleum University, Daqing 163318, China

Yunhua Wang
School of Mathematical Sciences, Harbin Normal University, Harbin 150001, China

Jinzi Liu
School of Mathematical Science and Technology, Northeast Petroleum University, Daqing 163318, China

ABSTRACT
Let \(f(z) \) be an analytic function in the open unit disk \(U \) normalized with \(f(0) = 0 \) and \(f'(0) = 1 \). In this paper, the starlikeness for \(f(z) \) is discussed.

Key Words: Analytic functions; Starlike function; Close-to-convex functions.

2000 Mathematical Subject Classification: 30C45.

INTRODUCTION
Let \(H \) be the class of analytic functions in \(U = \{ z \in \mathbb{C} : |z| < 1 \} \), and \(A \) be the subclass of \(H \) consisting of functions of the form

\[
f(z) = z + a_2 z^2 + a_3 z^3 + \cdots , z \in U.
\]

A function \(f(z) \in A \) is said to be starlike of order \(\alpha (0 \leq \alpha < p) \) in \(U \) (see Robertson (1936)), that is, \(f(z) \in S^*(\alpha) \), if and only if

\[
\text{Re}\left(\frac{zf''(z)}{f'(z)}\right) > \alpha , 0 \leq \alpha < 1, z \in U
\]

with \(S^*_1(0) := S^* \).
Similarly, a function $f(z) \in A$ is said to be convex of order $\alpha (0 \leq \alpha < 1)$ in U (see Robertson (1936)), that is, $f(z) \in K(\alpha)$, if and only if
\[
\text{Re}(1 + \frac{zf''(z)}{f'(z)}) > \alpha, 0 \leq \alpha < 1, z \in U
\] (3)
with $K(0) = K$.

By the definitions for the classes $S^*(\alpha)$ and $K(\alpha)$, we know that $f(z) \in K(\alpha)$ if and only if $f(z) \in S^*(\alpha)$. Marx (1932/33) and Strohhäcker (1933) showed that $f(z) \in K(0)$ implies $f(z) \in S^*(1/2)$.

Several results appeared previously about sufficient conditions of starlikeness (see (Nunokawa et al., 2012; Sokol, 2012)). In this paper, With the help of two inequality, the starlikeness for $f(z)$ is discussed.

The Main Results

Lemma 2.1. (see Nunokawa et al. (2012)) Let $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ be analytic in the unit disc U and $\alpha (0 < \alpha \leq 1/2)$ be a positive real number. Then suppose that there exists a point $z_0 \in U$ such that
\[
\text{Re}(z) > \alpha \text{ for } |z| < |z_0|
\] (4)
and
\[
\text{Re}(z_0) = \alpha, p(z_0) \neq \alpha.
\] (5)
Then we have
\[
\frac{z_0p'(z_0)}{p(z_0)} \leq \frac{\alpha}{2(1-\alpha)}.
\] (6)

By using Lemma 2.1, we first prove the following Theorem.

Theorem 2.1. Let $f(z) \in A$, and $\alpha (0 < \alpha \leq 1/2)$ be a positive real number. Suppose
\[
\frac{zf'(z)}{f(z)} \neq \alpha
\] (7)
and
Then we have $f(z) \in S^*(\alpha)$.

Proof. Let

$$p(z) = \frac{zf'(z)}{f(z)},$$

then $p(z)$ is analytic in U and $p(0) = 1$. Suppose that there exists a point $z_0 \in U$ which satisfies the conditions (4) and (5) of Lemma 2.1.

Now using (9), it follows that

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} = \frac{zp'(z)}{p(z)}.$$

Since the function $p(z)$ and the point z_0 satisfy all conditions Lemma 2.1, therefore in view of (6) and (10) gives

$$Re\left(1 + \frac{zf''(z_0)}{f'(z_0)}\right) = Re\left(\frac{zp'(z_0)}{p(z_0)} + p(z_0)\right).$$

This is a contradiction and therefore proof of the Theorem 2.1 is completed.

Lemma 2.2. (see [6]) Let $p(z) = 1 + c_1z + c_2z^2 + \cdots$ be analytic in the unit disc U and $\alpha(1/2 < \alpha < 1)$ be a positive real number. Then suppose that there exists a point $z_0 \in U$ such that

$$Re(z) > \alpha \text{ for } |z| < |z_0|$$

and

$$Re(z_0) = \alpha, p(z_0) \neq \alpha.$$

Then we have

$$\frac{zp'(z_0)}{p(z_0)} \leq -\frac{1-\alpha}{2\alpha}.$$

By using Lemma 2.2, we can prove the following Theorem.
Theorem 2.2. Let \(f(z) \in A \), and \(\alpha (1/2 < \alpha < 1) \) be a positive real number. Suppose
\[
\frac{zf'(z)}{f(z)} \neq \alpha \quad (15)
\]
and
\[
Re(1 + \frac{zf''(z)}{f'(z)}) > Re(\frac{zf'(z)}{f(z)}) - \frac{1 - \alpha}{2\alpha} \quad (16)
\]
Then we have \(f(z) \in S^*(\alpha) \).

Proof. Let
\[
p(z) = \frac{zf'(z)}{f(z)}, \quad (17)
\]
then \(p(z) \) is analytic in \(U \) and \(p(0) = 1 \). Suppose that there exists a point \(z_0 \in U \) which satisfies the conditions (12) and (13) of Lemma 2.2.

Now using (17), it follows that
\[
1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} = \frac{zp'(z)}{p(z)} \quad (18)
\]
Since the function \(p(z) \) and the point \(z_0 \) satisfy all conditions Lemma 2.2, therefore in view of (14) and (18) gives
\[
Re(1 + \frac{zf''(z_0)}{f'(z_0)}) = Re(\frac{zp'(z_0)}{p(z_0)} + p(z_0)) \quad (19)
\]
This is a contradiction and therefore proof of the Theorem 2.2 is completed.

REFERENCES