Solution Of A System Of Two Partial Differential Equations Of The Second Order Using Two Series

Hayder Jabbar Abood (Department of Mathematics, College of Education, Babylon University, Babylon, Iraq)

Solution Of A System Of Two Partial Differential Equations Of The Second Order Using Two Series

Abstract

For a system of two partial differential equations of second order, we obtain and justify two asymptotics solutions in the form of two series with respect to the small parameter ε. We have proven the solution is unique and uniform in the domain Ω, and, further, each the asymptotics approximations are within $O(\varepsilon^{n+1})$.

Introduction

Levenshtam (2009), considered systems of ordinary differential equations of the first order whose terms oscillate with a high frequency ω. For the problem on periodic solutions, the author justifies the averaging method and establishes a posteriori bounds for the error of partial sums of the complete asymptotic expansion for the solution. Asymptotic expansions of periodic solutions of second- and third-order equations and formal asymptotics of such solutions in the case of equations of arbitrary order were constructed in Abood (2004). The first-order asymptotic form was obtained and proved for the solution of a system of two partial differential equations with small parameters in the derivatives for the regular part, two boundary-layer parts and corner boundary part in Vasil'eva and Butuzob (1990). In Levenshtam and Abood (2005), an algorithm of asymptotic integration of the initial-boundary-value problem for the heat-conduction equation with minor terms (nonlinear sources of heat) in a thin rod of thickness $\varepsilon = \omega^{-1/2}$ oscillating in time with frequency ω^{-1} was proposed. In the present paper, we consider a system of partial differential equations of the second order and solve this system with the aid of two series and some conditions. Our paper continues the line of research initiated in Levenshtam and Abood (2005). Examples of applications of systems of second order partial differential equations in modelling can be found in elasticity in Nerantzaki and Kandilas (2008) and packed-bed electrode in Xiao-Ying Qin and Yan-Ping Sun (2009).

Statement Of The Problem

We study a system of second order partial differential equations with initial-boundary-value conditions

$$
\varepsilon \left(\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial y^2} \right) + b_1(x) \frac{\partial u}{\partial x} = a_1(x,t) u + \sum_{i=0}^{\infty} \varepsilon^i f_{i1}(u,x,y,t),
$$

$$
\varepsilon \left(\frac{\partial v}{\partial t} + \frac{\partial^2 v}{\partial y^2} + b_2(x) \frac{\partial v}{\partial x} \right) = a_2(x,t) v + \sum_{i=0}^{\infty} \varepsilon^i f_{i2}(u,x,y,t),
$$

in the domain $(x,y,t) \in \Omega = (0 \leq x \leq 1) \times (0 \leq y \leq 1) \times (0 \leq t < T)$.

The initial boundary conditions are
Solution Of A System Of Two Partial Differential Equations

\[
\begin{align*}
 u \big|_{t=0} &= 0, \quad u \big|_{x=0,1} = 0, \quad v \big|_{t=0} &= 0, \quad v \big|_{x=0,1} = 0, \\
 \frac{\partial u}{\partial y} \big|_{y=0,1} &= 0, \quad \frac{\partial v}{\partial y} \big|_{y=0,1} &= 0.
\end{align*}
\]

(2.2)

where \(\varepsilon \) is a small parameter, and the functions \(f_1(u, x, y, t, \varepsilon) \) and \(f_2(u, x, y, t, \varepsilon) \) are continuous and infinitely differentiable with respect to each of their arguments. The construction is made under the following conditions.

I. The functions \(b_i(x), a_i(x, t) \) and \(f_i, i = 1, 2 \) have continuous derivatives of order \((n+2) \).

II. We can assume that \(b_2 = 1 \). If \(b_2 = b_2(x) \), then making the change of the variable \(\zeta = \int_0^x b_2^{-1}(\sigma) d\sigma \), and we shall assume that \(b_1 = b(x) > 0 \) and \(b_2 = 1 \).

Algorithm For Construction Of The Asymptotics

We seek an asymptotics expansion of the solution of problem (2.1) and (2.2) as the following two series in the powers of \(\varepsilon \) in the form

\[
\begin{align*}
 u(x, y, t, \varepsilon) &= \sum_{i=0}^{\infty} \varepsilon^i \left[\tilde{u}_i(x, y, t) + p_i u(x, y, \tau) + q_i \mu(\xi, y, t) \right], \\
 v(x, y, t, \varepsilon) &= \sum_{i=0}^{\infty} \varepsilon^i \left[\tilde{v}_i(x, y, t) + p_i v(x, y, \tau) + q_i v(\xi, y, t) \right],
\end{align*}
\]

(3.1)

where \(\tilde{u}_i \) and \(\tilde{v}_i \) are coefficients of the regular part of the asymptotic, \(p_i u, p_i v, q_i u \) and \(p_i v \) are boundary-layer functions describing boundary layers near the initial instant of time \(t = 0 \) and the ends of the rod \(x = 0 \) and \(x = 1 \). The boundary-layer variables are

\[
\tau = \frac{t}{\varepsilon}, \quad \xi = \frac{x}{\varepsilon}.
\]

Regular Parts Of The Asymptotics \(\tilde{u} \) And \(\tilde{v} \)

We substitute series (3.1) into equations (2.1) - (2.2) and the coefficients of the same powers of \(\varepsilon \) in the left and right-hand sides of the obtained relations are equated. If the variable \(\tau \) is assumed to be independent of \(t \) and functions depending on \(\varepsilon \) are represented by the corresponding asymptotic series then problem (2.1) and (2.2) becomes
The following problems for the regular coefficients u_0 and v_0 are obtained:

$$b(x) \frac{\partial u_0}{\partial x} = a_1(x,t)u_0 + f_{10}(u_0, x, y, t),$$

$$\frac{\partial v_0}{\partial x} = a_2(x,t)v_0 + f_{20}(v_0, x, y, t),$$

$$\begin{align*}
\bar{u}_0 \bigg|_{t, r=0} &= 0, \\
\bar{v}_0 \bigg|_{t, r=0} &= 0, \\
\bar{v}_0 \bigg|_{r=0, y}\bigg&= 0, \\
\frac{\partial \bar{u}_0}{\partial y} \bigg|_{y=0,1} &= 0, \\
\frac{\partial \bar{v}_0}{\partial y} \bigg|_{y=0,1} &= 0.
\end{align*}$$

By direct integration, it can be seen [Viik (2010), Viika and Rõõm (2008), Tokovyy and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)] system (4.2) is equivalent to system of integral equations

$$\bar{u}_0(x,t) = \int_{0}^{x} \exp \left(\int_{0}^{x} b^{-1}(p) a_1(p,t) dp \right) b^{-1}(\sigma) \left[\bar{v}_0(\sigma,t) + f_{10}(\sigma, y, t) \right] d\sigma,$$

$$\bar{v}_0(x,t) = \int_{0}^{x} \exp \left(\int_{0}^{x} a_1(p,x,p) dp \right) \left[\bar{u}_0(x,s) + f_{20}(x, y, t) \right] ds.$$

Substituting (4.4) in (4.3), we arrive at an integral equation with respect to $\bar{u}_0(x,t)$:

$$\bar{u}_0(x,t) = \int_{0}^{x} \int_{0}^{x} G_0(x,t, \sigma, s) \bar{u}_0(\sigma, s) d\sigma ds + g_0(x,t),$$

where $G_0(x,t, \sigma, s)$ and $g_0(x,t)$ are known functions. The solution of this integral equation can be expressed in terms of the resolvent $K_0(x,t, \sigma, s)$ of the Kernel $G_0(x,t, \sigma, s)$ (as in [Viik (2010), Viika and Rõõm (2008), Tokovyy and Chien-Ching Ma,(2009), Toshiki, Son Shin, Murakami and Ngoc(2007)])

$$\bar{u}_0(x,t) = g_0(x,t) + \int_{0}^{x} \int_{0}^{x} K_0(x,t, \sigma, s) g_0(\sigma, s) d\sigma ds.$$

After that, the function $\bar{v}_0(x,t)$ can be determined by (4.4).
\[b(x) \frac{\partial \bar{u}_i}{\partial x} = a_i(x, t) \bar{u}_i(x, t) + \frac{\partial}{\partial t} f_{10}(\bar{\nu}_0 x, y, t) \bar{\nu}_0 + f_{11}(\bar{\nu}_0 x, y, t) - \frac{\partial}{\partial t} \bar{u}_0 - \frac{\partial^2}{\partial y^2} \bar{u}_0, \]

\[\frac{\partial \bar{\nu}_i}{\partial t} = a_2(x, t) \bar{\nu}_i(x, t) + \frac{\partial}{\partial t} f_{20}(\bar{\nu}_0 x, y, t) \bar{\nu}_0 + f_{21}(\bar{\nu}_0 x, y, t) - \frac{\partial^2}{\partial x^2} \bar{\nu}_0 - \frac{\partial^2}{\partial y^2} \bar{\nu}_0, \] (4.5)

\[\bar{u}_i(0, y, t) = - q \mu (0, y, t), \quad \bar{\nu}_i(x, y, 0) = - p \psi (x, y, 0), \]

\[\bar{u}_i \bigg|_{y=0,1} = 0, \quad \bar{\nu}_i \bigg|_{y=0,1} = 0. \]

From system (4.5) and direct integration, we have the system of integral equations

\[\bar{u}_i(x, t) = \frac{x}{b} \exp \left\{ \frac{p}{t} \right\}_0^x b^{-1}(p) a_i(p, t) dp \frac{\partial}{\partial s} b^{-1}(s) \left[a_2(s, t) \bar{\nu}_i(s, t) + \frac{\partial}{\partial s} f_{10}(\bar{\nu}_0 x, y, t) \bar{\nu}_0 + f_{11}(\bar{\nu}_0 x, y, t) - \frac{\partial}{\partial s} \bar{u}_0 - \frac{\partial^2}{\partial y^2} \bar{u}_0 \right] ds, \] (4.6)

\[\bar{\nu}_i(x, t) = \frac{t}{b} \exp \left\{ \frac{p}{t} \right\}_0^t \bar{a}_2(x, p) dp \frac{\partial}{\partial s} \bar{a}_1(x, s) \bar{\nu}_i(x, s) + \frac{\partial}{\partial s} f_{20}(\bar{\nu}_0 x, y, t) \bar{\nu}_0 + f_{21}(\bar{\nu}_0 x, y, t) - \frac{\partial^2}{\partial x^2} \bar{\nu}_0 - \frac{\partial^2}{\partial y^2} \bar{\nu}_0 \right] ds. \] (4.7)

Substituting (4.7) in (4.6), we arrive at the integral equation with respect to \(\bar{u}_i(x, t) \):

\[\bar{u}_i(x, t) = \frac{1}{b} \int_0^x G_i(x, y, t, \sigma) \bar{u}_i(\sigma, \sigma) d\sigma ds + g_i(x, y, t), \]

where \(G_i(x, y, t, \sigma) \) and \(g_i(x, y, t) \) are known functions. The solution of this integral equation can be expressed in terms of the resolvent \(K_i(x, y, t, \sigma, s) \) of the Kernel \(G_i(x, y, t, \sigma, s) \) [Viik (2010), Viika and Rõõm (2008), Tokovyy and Chien-Ching Ma (2009), Toshiki, Son Shin, Murakami and Ngoc (2007)] and we have

\[\bar{u}_i(x, y, t) = g_i(x, y, t) + \frac{1}{b} \int_0^x K_i(x, y, \sigma, \sigma) g_i(\sigma, \sigma) d\sigma ds. \] After that, the function \(\bar{\nu}_i(x, y, t) \) can be determined by (4.7).

For regular terms \(\bar{u}_n \) and \(\bar{\nu}_n \) we obtain the problem
Journal of Asian Scientific Research, 1 (8), pp.407-418

\[b(x) \frac{\partial \vec{u}_n}{\partial \tau} = a_1(x, t) \vec{u}_n(x, t) + i_n(\vec{v}_0 x, y, t), \]

(4.8)

\[\vec{u}_n(0, y, t) = -q_n u(0, y, t), \quad \frac{\partial \vec{u}_n}{\partial y} \bigg|_{y=0,1} = 0. \]

\[\frac{\partial \vec{v}_n}{\partial t} = a_2(x, t) \vec{v}_n(x, t) + i_n(\vec{v}_0 x, y, t), \]

(4.9)

\[\vec{v}_n(x, 0) = -p_n v(x, y, 0), \quad \frac{\partial \vec{v}_n}{\partial y} \bigg|_{y=0,1} = 0. \]

where \(i_n(\vec{u}_0 x, y, t) = \sum_{k=0}^{n} \frac{1}{k !} \frac{1}{\partial u} f_{uk}(\vec{u}_0 x, y, t) \vec{u}_k(x, t) - \frac{\partial \vec{u}_{n,1}}{\partial t} - \frac{\vec{v}_{n,1}}{y^2} \) and

\[\vec{v}_n(\vec{v}_0 x, y, t) = \sum_{k=0}^{n} \frac{1}{k !} \frac{1}{\partial v} f_{vk}(\vec{v}_0 x, y, t) \vec{v}_k(x, t) - \frac{\partial \vec{v}_{n,1}}{\partial y} - \frac{\vec{v}_{n,1}}{x}. \]

This problem is quite similar to problem (4.5) and can be solved by reduction to a system of integral equations.

Boundary Parts Of The Asymptotics \(p_u \) And \(p_v \)

We construct the following group of coefficients of two series (3.1) that is the boundary-layer parts \(p_u(x, y, \tau, \varepsilon) \) and \(p_v(x, y, \tau, \varepsilon) \). We consider problem (2.1) in a neighbourhood of the upper boundary \((t = 0)\) of the domain \(\Omega \) and perform the change of variables \(t = \varepsilon \tau \); we obtain the system

\[\frac{\partial p_u}{\partial \tau} + \varepsilon \frac{\partial^2 p_u}{\partial y^2} + b(x) \frac{\partial p_u}{\partial x} = a_1(x, t) p_u + f_1(p_u, x, y, \varepsilon \tau, \varepsilon), \]

(5.1)

\[\frac{\partial p_v}{\partial \tau} + \varepsilon \left(\frac{\partial^2 p_v}{\partial y^2} + \frac{\partial p_v}{\partial x} \right) = a_2(x, t) p_v + f_2(p_v, x, y, \varepsilon \tau, \varepsilon), \]

\[p_u(x, y, 0) = -\vec{u}(x, y, 0), \quad p_v(x, y, 0) = -\vec{v}(x, y, 0), \quad \frac{dp_u}{dy} \bigg|_{y=0,1} = 0, \quad \frac{dp_v}{dy} \bigg|_{y=0,1} = 0. \]

The boundary-layer functions are \(p_u \) and \(p_v \). In this case \(p_v = 0 \).

For \(p_u \) we obtain the problem

\[\frac{\partial p_u}{\partial \tau} + b(x) \frac{\partial p_u}{\partial x} = a_1(x, 0) p_u, \quad 0 \leq x \leq X, \quad \tau \geq 0, \]

\[p_u(0, y, \tau) = 0, \quad p_u(x, y, 0) = \vec{u}_0(x, y, 0), \]

(5.2)

\[\frac{dp_u}{dy} \bigg|_{y=0,1} = 0, \quad \frac{dp_v}{dy} \bigg|_{y=0,1} = 0. \]

By direct integration, equation (5.2) has a classical solution.
Solution Of A System Of Two Partial Differential Equations

\[p_{u}(x, \tau) = \begin{cases}
-\bar{u}_0 \left(\theta^{-1}(\theta(x) - \tau), 0 \right) \exp \left(\int_0^{\tau} a_i \left(\theta^{-1}(\theta(x) - \tau + s), 0 \right) ds \right), & 0 \leq \tau \leq \theta \\
0, & \tau \geq \theta,
\end{cases} \]

where \(\theta(x) = \int_0^x b^{-1}(\sigma) d\sigma \) and \(\theta^{-1}(z) \) is the function inverse to \(z = \theta(x) \).

The system of equations for \(p_{u} \) and \(p_{v} \) is

\[\frac{\partial p_{u}}{\partial \tau} + b(x) \frac{\partial p_{u}}{\partial x} = a_i(x, t) p_{u} + \Delta_i(x, \tau) \]

\[p_{u}(x, y, 0) = -\bar{u}_i(x, y, 0), \quad p_{u}(0, y, \tau) = 0, \quad \frac{dp_{u}}{dy} \bigg|_{y=0,1} = 0, \]

\[\frac{\partial p_{v}}{\partial x} = a_2(x, t) p_{v} + \bar{\Delta}_i(x, \tau), \]

\[p_{v}(x, y, 0) = -\bar{v}_i(x, y, 0), \quad \frac{dp_{v}}{dy} \bigg|_{y=0,1} = 0. \]

Here \(\Delta_i(x, \tau) = \frac{\partial a_i}{\partial t}(x, 0) \tau p_{0u}(x, \tau) + f_{10}(p_{0u}, x, y, 0, 0) - \frac{\partial^2 p_{0u}}{\partial y^2} \) and

\[\bar{\Delta}_i(x, \tau) = \frac{\partial a_2}{\partial t}(x, 0) \tau p_{0v}(x, \tau) + f_{20}(p_{0v}, x, y, 0, 0) - \frac{\partial^2 p_{0v}}{\partial y^2} \] is smooth. In the same way we obtain

\[p_{v} = a_2(x, 0) \int_{\infty}^{\tau} p_{0v}(x, s) ds \left\{ \begin{array}{ll}
ap_2(x, 0) \int_{\theta(x)}^{\tau} p_{0v}(x, s) ds, & 0 \leq \tau \leq \theta(x) \\
0, & \tau \geq \theta(x).
\end{array} \right. \]

\[p_{u} = \left\{ \begin{array}{ll}
-\bar{u}_i \left(\theta^{-1}(\theta(x) - \tau), 0 \right) \exp \left(\int_0^{\tau} a_i \left(\theta^{-1}(\theta(x) - \tau + s), 0 \right) ds \right) \times \\
\Delta_i \left(\theta^{-1}(\theta(x) - \tau + s), 0 \right) ds, & 0 \leq \tau \leq \theta(x) \\
0, & \tau \geq \theta(x).
\end{array} \right. \]
The function \(p_n u \) can be defined as the solution of the problems

\[
\frac{\partial p_n u}{\partial \tau} + b(x) \frac{\partial p_n u}{\partial x} = a_1(x, t) p_n u + \Delta_n (x, y, \tau), \quad (5.3)
\]

\[
p_n u(x, y, 0) = -\bar{u}_n (x, y, 0), \quad p_n u (0, y, \tau) = 0,
\]

\[
\left. \frac{dp_n u}{dy} \right|_{y=0,1} = 0,
\]

where

\[
\Delta_n (x, y, \tau) = \sum_{k=0}^{n} \frac{1}{k!} \tau^k \left[\frac{\partial^2 a_{2k}}{\partial t^2} (x, 0) p_{k-1} u(x, \tau) + f_{ik} (p_{0}, x, y, 0, 0) + \frac{\partial^k}{\partial t^k} f_{ik} (p_{0}, x, y, 0, 0) \right] - \frac{\partial^2 p_{n-1} u}{\partial y^2},
\]

since (5.3) is a partial differential equation of the first order and first degree. Here the smooth function \(\Delta_n (x, y, \tau) \) is known. Using the initial and boundary conditions (5.4), we obtain

\[
p_n u = \begin{cases}
-\bar{u}_n (\theta^{-1}(\theta(x) - \tau), 0) \exp \left(\int_0^\tau a_1 (\theta^{-1}(\theta(x) - \tau + s), 0) \right) \times \\
\Delta_n (\theta^{-1}(\theta(x) - \tau + s), 0) ds, & 0 \leq \tau \leq \theta(x) \\
0, & \tau \geq \theta(x).
\end{cases}
\]

For the function \(p_n v \), it is the solution of the problem

\[
\frac{\partial p_n v}{\partial \tau} = \bar{\Delta}_n (x, y, \tau),
\]

\[
p_n v(x, y, 0) = -\bar{v} (x, y, 0)
\]

\[
\left. \frac{dp v}{dy} \right|_{y=0,1} = 0,
\]

where

\[
\bar{\Delta}_n (x, y, \tau) = a_2 (x, t) p_n v + \sum_{k=0}^{n} \frac{1}{k!} \tau^k \left[\frac{\partial a_{2k}}{\partial t^2} (x, 0) p_{k-1} v(x, \tau) + f_{ik} (p_{0}, x, y, 0, 0) + \frac{\partial^k}{\partial t^k} f_{ik} (p_{0}, x, y, 0, 0) \right] - \frac{\partial^2 p_{n-1} v}{\partial y^2} - \frac{\partial^2 p_{n-1} v}{\partial x^2},
\]
Solution Of A System Of Two Partial Differential Equations

that satisfies the condition $p_n(x, y, \infty) = 0$, where $\Delta_n(x, y, \tau)$ is a known continuous function vanishing for $\tau \geq \theta(x)$ and with partial derivative making jump on the characteristic line $\tau = \theta(x)$. Integrating, we obtain

$$p_n(x, y, \tau) = \begin{cases} \int_{\theta(x)}^{\tau} \Delta_n(x, y, r)dr, & 0 \leq \tau \leq \theta(x), \\ 0, & \tau \geq \theta(x), \end{cases}$$

where the function $p_n(x, y, \tau)$ is smooth everywhere.

Boundary Parts Of The Asymptotics q_u And q_v

Now, we find the coefficients $q_u(\xi, y, t)$ and $q_v(\xi, y, t)$. Consider problem (2.1) and the conditions (2.2) in a neighbourhood of the left boundary of the domain Ω and perform the change of variable $\xi = xe^{-1}$. We obtain the system

$$\varepsilon \left(\frac{\partial q_u}{\partial t} + \frac{\partial^2 q_u}{\partial y^2} \right) + \frac{1}{\varepsilon} \sum_{k=0}^{\infty} \frac{1}{k!} \varepsilon^k b(0) \varepsilon^k \frac{\partial q_u}{\partial \xi} = a_1(\varepsilon \xi, t)q_u + f_1(q_u, \varepsilon \xi, y, t, \varepsilon)$$

$$\frac{\partial q_v}{\partial t} + \varepsilon \frac{\partial^2 q_v}{\partial y^2} + \frac{\partial q_v}{\partial \xi} = a_2(\varepsilon \xi, t)q_v(\xi, y, t, \varepsilon) + f_2(q_u, \varepsilon \xi, y, t, \varepsilon).$$

For $q_u(\xi, y, t)$ we obtain the equation $b(0) \frac{\partial q_u}{\partial \xi} = 0$.

From this equation, taking into account the standard condition for boundary parts at infinity, that means $q_u(\infty, t) = 0$, and so we have $q_u(\xi, y, t) \equiv 0$.

Now, for $q_v(\xi, y, t)$ we have the problem

$$\frac{\partial q_v}{\partial t} + \frac{\partial q_v}{\partial \xi} = a_2(0, t)q_v(\xi, y, t), \quad \xi \geq 0, \quad 0 \leq t \leq T,$$

$$q_v(0, y, t) = -\nu_0(0, y, t), \quad q_v(\xi, y, 0) = 0, \quad \frac{\partial q_v}{\partial y} \bigg|_{y=0,1} = 0.$$

Since this is a partial differential of first order and first degree, it’s solution have the form

$$q_v(\xi, y, t) = \begin{cases} -\nu_0(0, y, t - \xi) \exp \left(\int_{0}^{\xi} a_2(0, y, s + t - \xi)ds \right), & 0 \leq \xi \leq t \leq T, \\ 0, & \xi \geq t. \end{cases}$$
It's possible to find q_iu and q_iv in the same way. Finally, we will continue to find q_nu and q_nv.

For q_nu we have the equation

$$b(0)\frac{\partial q_nu}{\partial \xi} = \Psi_n(\xi, y, t),$$

(6.1)

where

$$\Psi_n(\xi, y, t) = \sum_{k=0}^{n} \frac{1}{k!} \xi^k \left[\frac{\partial q_{ik}}{\partial t} (0, y, t) q_{k-1}u + f_{ik} (q_0u, 0, y, t, 0) + \frac{\partial^k}{\partial^k} q_{0u} \right] \frac{\partial q_{k-1}u}{\partial t} - \frac{\partial q_{k-1}u}{\partial t} \frac{\partial^2 q_{n-k}u}{\partial y^2},$$

is known and continuous everywhere.

The function $\Psi_n(\xi, y, t) = 0$ for $\xi \geq t$ (is evident from our findings in the above), so we can seek this function in the form

$$\Psi_n(\xi, y, t) = z(y)(t - \xi)Z_n(\xi, t), \quad \text{for} \quad \xi \leq t.$$

(6.2)

The function $Z_n(\xi, t)$ is smooth everywhere. By the condition $q_nu(\infty, y, t) = 0$ and integrating (6.1), we have

$$q_nu(\xi, y, t) = \begin{cases} b^{-1}(0)z(y)\int_{t-s}^{\xi}(t-s)Z_n(s, t)ds, & 0 \leq \xi \leq t \leq T \\ 0, & \xi \geq t. \end{cases}$$

We can define the part $q_nv(\xi, y, t)$ as the solution of the problem

$$\frac{\partial q_nv}{\partial t} + \frac{\partial q_nv}{\partial \xi} = \Xi_n(\xi, y, t),$$

(6.3)

$$q_nv(0, y, t) = -\Xi_n(0, y, t), \quad q_nv(\xi, y, 0) = 0,$$

$$\left. \frac{\partial q_nv}{\partial y} \right|_{y=0,1} = 0$$

(6.4)
\[\Psi_n(\xi, y, t) = a_2(0, y, t) p_n v + \sum_{k=0}^{n} \frac{1}{k!} \xi^k \left[\frac{\partial a_k}{\partial t}(x, 0) p_{k-1} v(0, y, t) + f_{ik}(p_{0} v, 0, y, t, 0) + \right. \]
\[\left. \frac{\partial^k}{\partial^k t} p_{k} v \right] f_{ik}(p_{0} v, 0, y, t, 0) - \frac{\partial p_{n-1} v}{\partial x} - \frac{\partial^2 p_{n-1} v}{\partial y^2} \].

\[\Psi_n(\xi, y, t) \] is a known continuous function that satisfies the condition \(p_n v(\infty, y, t) = 0 \), vanishing for \(\xi \geq t \) and with partial derivative making jump on the characteristic line \(\xi = t \). Solving (6.3) and using (6.4), we obtain

\[q_n v(\xi, y, t) = \begin{cases} -\frac{1}{\Psi_n(0, y, t - \xi)} \exp \left(\int_0^\xi \frac{\xi}{\Psi_n(0, y, s + t - \xi)} ds \right), & 0 \leq \xi \leq t \leq T \\ 0, & \xi \geq t. \end{cases} \]

where the function \(q_n v(\xi, y, t) \) is smooth everywhere.

7. JUSTIFICATION OF THE ASYMPTOTICS

By \(U_n(x, y, t, \varepsilon) \) and \(V_n(x, y, t, \varepsilon) \) we denote the \(n \)-th partial sums of the series (3.1).

Theorem. The solution \(u(x, y, t, \varepsilon), v(x, y, t, \varepsilon) \) of problem (2.1) and (2.2) admits the asymptotic solution

\[u(x, y, t, \varepsilon) - U_n(x, y, t, \varepsilon) = O(\varepsilon^n), \quad v(x, y, t, \varepsilon) - V_n(x, y, t, \varepsilon) = O(\varepsilon^n), \]

uniformly in the domain \(\Omega = (0 \leq x \leq 1) \times (0 \leq y \leq 1) \times (0 \leq t \leq T) \).

Proof. We set \(u = U_{n+1} + w_1 \) and \(v = V_{n+1} + w_2 \). Substituting this in (1.1) and (2.1) we obtain the following problem for the remainder terms \(w_1 \) and \(w_2 \),

\[\varepsilon \left(\frac{\partial w_1}{\partial t} + \frac{\partial^2 w_1}{\partial y^2} \right) + b_1(x) \frac{\partial w_1}{\partial x} = a_1(x, t) w_1 + \Pi_1(x, y, t, \varepsilon), \]
\[\frac{\partial w_2}{\partial t} + \frac{\partial^2 w_2}{\partial y^2} + b_1(x) \frac{\partial w_2}{\partial x} = a_2(x, t) w_2 + \Pi_2(x, y, t, \varepsilon), \]
\[w_1 \mid_{t=0} = 0, \quad w_1 \mid_{y=0} = 0, \quad w_2 \mid_{t=0} = 0, \quad w_2 \mid_{y=0} = 0. \]
\[\frac{\partial w_1}{\partial y} \mid_{y=0, t} = 0, \quad \frac{\partial w_2}{\partial y} \mid_{y=0, t} = 0. \]

Obviously, the inhomogeneous terms \(\Pi_1 \) and \(\Pi_2 \) can be estimated as \(H_1(x, y, t, \varepsilon) = O(\varepsilon^n) \) uniformly in \(\Omega \). We shall prove that the same estimate is valid for \(w_1 \) and \(w_2 \). In view of the equalities

\[u - U_n = (u - U_{n+1}) + (U_{n+1} - U_n) = w_1 + O(\varepsilon^n), \]
\[v - V_n = w_2 + O(\varepsilon^n), \]

this will directly imply the assertion of the theorem.
We make the change of the variables \(w_i = r_i e^{i(x+\varepsilon t)} \) \((i = 1, 2)\), where \(k - \text{const} > 0 \). We obtain the following system of equations for \(r_i \) and \(r_j \):

\[
\begin{align*}
\varepsilon \left(\frac{\partial r_i}{\partial t} + \frac{\partial^2 r_i}{\partial y^2} \right) + b_i(x) \frac{\partial r_i}{\partial x} &= c_i(x,t) r_i + \hat{\Pi}_i(x,y,t,\varepsilon), \\
\frac{\partial r_j}{\partial t} + \varepsilon \left(\frac{\partial^2 r_j}{\partial y^2} + b_i(x) \frac{\partial r_j}{\partial x} \right) &= c_j(x,t) r_j + \hat{\Pi}_j(x,y,t,\varepsilon),
\end{align*}
\]

(7.2)

with the homogeneous boundary conditions, as in the case of \(r_i,i = 1,2 \). Here \(c_i = a_i(x,t) - k(b(x) + \varepsilon) \), \(c_j = a_j(x,t) - k(1 + \varepsilon) \), \(\hat{\Pi}_i = \Pi e^{-\varepsilon t} = O(e^{-\varepsilon t}) \). Assume that \(|r_i| \) has a maximum at a point \(K_i(x_i,t_i) \) of \(\Omega \) and \(|r_j| \) has a maximum at a point \(K_j(x_j,t_j) \), and assume that \(|r_i(K_j)| \geq |r_j(K_j)| \). We shall consider the first equation of (7.2) at \(K_i \), \((||r_i(K_j)|| \leq |r_j(K_j)|) \), then we shall consider the first equation of (7.2) at \(K_j \). We rewrite this equation as

\[
\varepsilon \left(\frac{\partial r_i}{\partial t} + \frac{\partial^2 r_i}{\partial y^2} \right) + b_i(x) \frac{\partial r_i}{\partial x} = c_i(x,t) r_i + \hat{\Pi}_i(x,y,t,\varepsilon),
\]

(7.3)

Assume that the function \(r_i \) is negative and has a minimum at \(K_i \). (The case of a positive maximum can be considered in the same way.) Then \(\frac{\partial r_i}{\partial t} \leq 0 \) and \(\frac{\partial r_i}{\partial x} \leq 0 \) at this point (the inequality sign is possible only if \(K_i \) lies on the boundary of \(\Omega \)). Hence the left-hand side of (7.3) is negative at \(K_i \), and is not larger than \(r_i(K_i) \), while the right-hand side is of order \(e^{-\varepsilon t} \).

Consequently, \(|r_i(K_i)| = \max_{\Omega} |r_i(x,t)| = O(e^{-\varepsilon t}) \). Since \(|r_i(K_j)| \geq |r_j(K_j)| \), it follows that \(|r_j(K_j)| = \max_{\Omega} |r_j(x,t)| = O(e^{-\varepsilon t}) \). Therefore \(r_i(x,t) = O(e^{-\varepsilon t}) \) uniformly in \(\Omega \). Hence we also have \(w_i = r_i e^{i(x+\varepsilon t)} = O(e^{-\varepsilon t}) \) uniformly in \(G \).

The proof of Theorem is complete.

References

Solution Of A System Of Two Partial Differential Equations…..

